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What is a Mechanical Earth Model?

• A logical compilation of relevant information about earth 
stresses and rock mechanical properties based on 
geomechanical studies and geological, geophysical and 
reservoir engineering models.

• Forms part of a performance assessment to determine the 
integrity of the reservoir and its bounding seals.

• Elastic properties from the Cretaceous Mannville Group down 
to the Mississippian Frobisher Beds were computed.

• The Mannville Group was chosen as an upper limit because of 
its large flow velocity, as any CO2 potentially leaking upwards 
would likely be carried away laterally by this aquifer. 



Weyburn CO2 Storage System
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Mechanical Properties of Formations
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Fractures and In Situ Stresses

• NE-SW trending set of fractures in reservoir controls the flow, 
but there is also a secondary set in the NW-SE direction. 

• Fractures believed to have a tectonic origin. Compressive 
stresses lead to tensional failure, accompanied by rotation and 
dragging of pre-existing structures.

• Azimuth of σH’ is ~ 40-50°, whereas σh’ is ~ 130-140°. 
• The vertical in-situ stress was obtained from density logs, with 

an average unit weight of 24 kPa/m. Minimum in-situ stress 
measurements made in southeastern Saskatchewan (near Regina 
and within the Midale Field) seem to indicate a minimum stress 
gradient of 18 kPa/m.



In Situ Stresses
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Pressure History of Weyburn Field
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Analysis of Pressure History

• Assessing initial pre-CO2 injection conditions for a CO2-
EOR storage project is challenging due to the previous 
history of exploitation and production within the reservoir.  

• A geomechanical analysis of the system was carried out 
using the MEM and the pressure information. 

• The large stiffness of the reservoir and low pressure 
gradients leads to a minimum distortion of the reservoir and 
bounding seals, and small changes in the in-situ stresses.

•• Consequently, the hydraulic integrity of the caprock has Consequently, the hydraulic integrity of the caprock has 
likely been preserved during prelikely been preserved during pre--CO2 injection history CO2 injection history 
of the reservoir.of the reservoir.



Geomechanical Performance of Caprock
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Impact of Elevated CO2 Injection Pressures 

• To study the role of injection pressures on the 
post-EOR or CO2 storage phase of the project, 
the pressures were increased synthetically.

• Results indicated that hydraulic fracturing will 
most likely be the mechanism of failure within 
the bounding seals rather than shear failure



MEM and Salt Dissolution



Stress Changes due
to Salt Dissolution
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Summary

• A mechanical earth model was developed to evaluate the 
geomechanical performance of the Weyburn Field as part of 
the performance assessment studies undertaken for the IEA 
Weyburn CO2 Monitoring and Storage Project.

• Simulation studies using the mechanical earth model 
support the conclusion that the integrity of the bounding 
seals has been preserved during years of production and 
injection prior to CO2 injection.

• In addition, hydraulic fracturing (maximum injection 
pressures) will likely control the maximum volume of CO2
that can ultimately be stored in the Weyburn Field



Phase II Research Activities related to the Mechanical 
Earth Model for Weyburn

• Measurement of in situ stresses
• Characterization of natural fractures from the Frobisher

formation to the top of the bedrock
• Increased understanding of the flow properties of these 

fractures as well as fractures within the reservoir.
• Wellbore integrity issues such as cement permeability and its 

prediction, permeability of cement-casing and cement borehole 
interfaces

• Development and validation of techniques to evaluate wellbore 
system transport properties. 

• Impact of thermal effects on caprock integrity
• Refinement of the hydro-geomechanical properties database 

for key geological layers within the System Model. 




